6.2 平面设计


6.2.1 道路平面线形由直线、平曲线组成,平曲线由圆曲线、缓和曲线组成,应处理好直线与平曲线的衔接,合理地设置缓和曲线、超高、加宽等。
6.2.2 道路圆曲线最小半径应符合表6.2.2的规定。一般情况下应采用大于或等于不设超高最小半径值;当地形条件受限制时,可采用设超高最小半径的一般值;当地形条件特别困难时,可采用设超高最小半径的极限值。
表6.2.2 圆曲线最小半径
注:“一般值”为正常情况下的采用值;“极限值”为条件受限时,可采用的值。
6.2.3 平曲线与圆曲线最小长度应符合表6.2.3的规定。
表6.2.3 平曲线与圆曲线最小长度
6.2.4 直线与圆曲线或大半径圆曲线与小半径圆曲线之间应设缓和曲线。缓和曲线应采用回旋线,缓和曲线最小长度应符合表6.2.4-1的规定。当设计速度小于40km/h时,缓和曲线可采用直线代替。
表6.2.4-1 缓和曲线最小长度
    当圆曲线半径大于表6.2.4-2不设缓和曲线的最小圆曲线半径时,直线与圆曲线可直接连接。
表6.2.4-2 不设缓和曲线的最小圆曲线半径
6.2.5 当圆曲线半径小于本规范表6.2.2中不设超高最小半径时,在圆曲线范围内应设超高。最大超高横坡度应符合本规范表6.2.5的规定。当由直线段的正常路拱断面过渡到圆曲线上的超高断面时,必须设置超高缓和段。
表6.2.5 最大超高横坡度

6.2.6 当圆曲线半径小于或等于250m时,应在圆曲线内侧加宽,并应设置加宽缓和段。
6.2.7 视距应符合下列规定:
    1 停车视距应大于或等于表6.2.7规定值,积雪或冰冻地区的停车视距宜适当增长。
    2 当车行道上对向行驶的车辆有会车可能时,应采用会车视距,其值应为表6.2.7中停车视距的两倍。
    3 对货车比例较高的道路,应验算货车的停车视距。
    4 对设置平、纵曲线可能影响行车视距路段,应进行视距验算。
表6.2.7 停车视距
6.2.8 分隔带及缘石开口应符合下列规定:
    1 快速路中间分隔带在枢纽立交、隧道、特大桥及路堑段前后,应设置中间分隔带紧急开口。开口最小间距不宜小于2km,开口长度宜采用20m~30m,开口处应设置活动护栏。两侧分隔带开口应符合进出口最小间距要求。
    2 主干路的两侧分隔带断口间距宜大于或等于300m,路侧带缘石开口距交叉口间距应大于进出口道展宽段长度。

条文说明
6.2.1 道路平面线形由直线和平曲线组成。直线的几何形态灵活性差,有僵硬不协调的缺点,并很难适应地形的变化。直线段太长,驾驶员会感到厌倦,注意力不易集中,成为交通肇事的起因。平曲线间的直线长度亦不宜过短,过短直线段使驾驶员操纵方向盘有困难,对行车不安全。
    平曲线由圆曲线和缓和曲线组成,为使汽车能安全、顺适地由直线段进入曲线,要合理选用圆曲线半径,并根据半径大小设置超高和加宽。同时车辆从直线段驶入平曲线或平曲线驶入直线段,为了缓和行车方向和离心力的突变,确保行车的舒适和安全,在直线和圆曲线间或半径相差悬殊的圆曲线之间需设置符合车辆转向行驶轨迹和离心力渐变的缓和曲线。
    因此,在平面线形设计中,不仅要合理选用各种线形指标,更重要的是还要处理好各种线形间的衔接,以保证车辆安全、舒适地行驶。设计人员应根据地形、地物、环境、安全、景观,合理运用直线、圆曲线、缓和曲线。对线形要求高的道路,应采用透视图法或三维手段检查设计路段线形,特别是避免断背曲线。
6.2.2 圆曲线最小半径
    本规范规定了圆曲线最小半径有三类:不设超高最小半径、设超高最小半径一般值及极限值。在设计中应首先考虑安全因素,其次要考虑节约用地及投资,结合工程情况合理选用指标。采用小于不设超高最小半径时,曲线段应设置超高,超高过渡段内应满足路面排水要求。
    圆曲线最小半径是以汽车在曲线部分能安全而又顺适地行驶所需要的条件而确定的,即车辆行驶在道路曲线部分所产生的离心力等横向力不超过轮胎与路面的摩阻力所允许的界限。圆曲线半径的通用计算公式为:
    式中:
    R——曲线半径(m);
    V——设计速度(km/h);
    μ——横向力系数,取轮胎与路面之间的横向摩阻系数;
    i——路面横坡度或超高横坡度,以小数表示,反超高时用负值。
    横向力系数的大小影响着汽车的稳定程度、乘客的舒适感、燃料和轮胎的消耗以及其他方面,所以μ值的选用应保证汽车在圆曲线上行驶时的横向抗滑稳定性,以及乘客的舒适和经济的要求。表8为不同μ值对乘客的舒适程度反映。
表8 汽车在弯道上行驶时对乘客的舒适感
    μ值的选用还应考虑汽车营运的经济性。根据试验分析,汽车在弯道上行驶时与在直线上行驶相比,当μ=0.10时,燃料消耗增加10%,轮胎磨耗增加1.2倍;当μ=0.15时,燃料消耗增加20%,轮胎磨耗增加2.9倍。因此,在计算最小圆曲线半径时,μ值小于0.15为宜。
    1 不设超高最小半径
    我国《公路工程技术标准》JTGB01-2003采用的μ值较小,不设超高的圆曲线最小半径μ值按0.035~0.040取用,计算出的不设超高的最小半径值较大。以设计速度60km/h为例,横坡度i≤2.0%时,不设超高圆曲线最小半径为1500m,这样小于1500m的半径均需设超高。在城市道路建成区由于两侧建筑已形成,如设超高,与两侧建筑物标高不好配合且影响街景美观,因此城市道路可适当降低标准。结合我国城市道路大型客货车较多、车道机非混行、交叉口多的特点,μ值可适当加大些,城市道路不设超高的经验数据μ=0.067,虽然比公路0.040大些,但对乘客舒适感程度差别不大,为减少超高,该取值对城市道路是合适的。圆曲线半径计算值与规范采用值见表9。
    2 设超高最小半径一般值
    设超高最小半径一般值计算中,μ值采用0.067,超高值为0.02~0.06.圆曲线半径计算值与规范采用值见表9。
    3 设超高最小半径极限值
    设超高最小半径极限值计算中,μ值采用0.14~0.16,超高值为0.02~0.06。圆曲线半径计算值与规范采用值见表9。
表9 圆曲线半径计算表

续表 9
6.2.3 平曲线与圆曲线最小长度
    规定平曲线与圆曲线最小长度的目的是避免驾驶员在平曲线上行驶时,操纵方向盘变动频繁,高速行驶危险,加上离心加速度变化率过大,使乘客感到不舒适。因此,必须确定不同设计速度条件下的平曲线及圆曲线最小长度。
    1 平曲线最小长度
    《日本公路技术标准的解说与运用》中规定平曲线最小长度为车辆6s的行驶距离,能达到缓和曲线最小长度的2倍。这实际上是一种极限状态,此时曲线为凸形曲线,驾驶者会感到操作突变且视觉不舒顺。因此最小平曲线长度理论上应大于2倍缓和曲线最小长度,即保证平曲线设置缓和曲线最小长度后,还能保留一段长度的圆曲线。在《公路路线设计规范》JTGD20一2006中,规定了平曲线最小长度的“最小值”,为2倍缓和曲线最小长度,“一般值”为“最小值”的3倍。本次编制中根据城市道路设计的具体情况,将原规范中的规定作为“极限值”,将缓和曲线的3倍作为“一般值”。
    2 圆曲线最小长度圆曲线最小长度为车辆3s的行驶距离。
    3 平曲线及圆曲线最小长度计算公式为:
    式中:
    L min——行驶距离(m);
    V a——设计速度(km/h);
    t一一行驶时间(s)。
    平曲线及圆曲线最小长度计算值与规范采用值见表10。
表10 平曲线及圆曲线最小长度计算表

6.2.4 缓和曲线
    车辆从直线段驶入平曲线或平曲线驶入直线段,由大半径的圆曲线驶入小半径的圆曲线或由小半径的圆曲线驶入大半径的圆曲线,为了缓和行车方向和离心力的突变,确保行车的舒适和安全,在直线和圆曲线间或半径相差悬殊的圆曲线之间需设置符合车辆转向行驶轨迹和离心力渐变的缓和曲线。行车道的超高或加宽应在缓和曲线内完成,在超高缓和段内逐渐过渡到全超高或在加宽缓和段内逐渐过渡到全加宽。
    缓和曲线采用回旋线,是由于汽车行驶轨迹非常近似回旋线,它既能满足转向角和离心力逐渐变化的要求,同时又能在回旋线内完成超高和加宽的逐渐过渡,所以本规范中采用回旋线。
回旋线的基本公式如下:

    式中:
    R——与回旋线相连接的圆曲线半径(m);
    L s一一回旋线长度(m);
    A——回旋线参数(m)。
    1 缓和曲线最小长度
        1) 按离心加速度变化率计算
    即离心加速度从直线上的零增加到进入圆曲线时的最大值,离心加速度变化率限制在一定的范围内。
    从乘客舒适角度,离心加速度变化率α p经测试知在(0.5~0.75)m/s 3为好,我国道路设计中采用a p=0.6m/s 3,则

    式中:
    V——设计速度(km/h);
    R——设超高最小半径(m)。
        2)按驾驶员操作反应时间计算
    汽车在缓和曲线上行驶时,行车时间不应过短,应使驾驶员有足够的时间适应线形的变化,也使乘客感到舒适。缓和曲线上行驶时间采用3s,按下式计算:

    回旋线参数及长度应根据线形设计以及对安全、视距、超高、加宽、景观等的要求,选用较大的数值。缓和曲线最小长度系曲率变化需要的最小长度,按公式(7)及公式(8)两者计算的大者,按5m的整倍数作为缓和曲线最小长度采用值,见表11。
表11 缓和曲线最小长度
    2 不设缓和曲线的最小圆曲线半径
    在直线和圆曲线之间插人缓和曲线后,将产生一个位移量△R,当此位移量△R与已包括在车道中的富裕宽度相比为很小时,则可将缓和曲线省略,直线与圆曲线可径相连接。设置缓和曲线的△R以0.2m的位移量为界限。当△R<0.2m可不设缓和曲线,当△R≥0.2m时设缓和曲线。从回旋线数学表达式可知:
    采用△R=0.2m及t=3s行驶时,即可得出不设缓和曲线的临界半径为:
    为不影响驾驶员在视觉和行驶上的顺适,不设缓和曲线的最小半径值为式(9)计算值的2倍,不设缓和曲线的最小圆曲线半径计算值及采用值见表12。
表12 不设缓和曲线的最小圆曲线半径
    设计速度小于40km/h时,缓和曲线可用直线代替,用以完成超高或加宽过渡。直线缓和段一端应与圆曲线相切,另一端与直线相接,相接处予以圆顺。
6.2.5 超高和超高缓和段
    1 超高值
    当采用的圆曲线半径小于不设超高的最小半径时,汽车在圆曲线上行驶时受到的横向力会使汽车产生滑移或倾覆。为了抵消车辆在曲线路段上行驶时所产生的离心力,将圆曲线部分的路面做成向内侧倾斜的超高横坡度,形成一个向圆曲线内侧的横向分力,使汽车能安全、稳定、满足设计速度和经济、舒适地通过圆曲线。超高横坡度由车速确定,但过大的超高往往会引起车辆的横向滑移,尤其在潮湿多雨以及冰冻地区,当弯道车速慢或停止在圆曲线上时,车辆有可能产生向内侧滑移的现象,所以应对超高横坡度加以限制。快速路上行驶的汽车为了克服行车中较大的离心力,超高横坡度可较一般规定值略高。我国《公路路线设计规范》JTGD20-2006规定,一般地区高速公路、一级公路最大超高横坡度为8%或10%,其他等级公路为8%,积雪或冰冻地区为6%较安全。
    城市道路由于受交叉口、非机动车以及街坊两侧建筑的影响,不宜采用过大的超高横坡度。综合各方面的情况,拟定城市道路最大超高横坡度如下:设计速度100km/h、80km/h为6.0%;设计速度60km/h、50km/h为4.0%,设计速度小于等于40km/h为2.0%。
    2 超高缓和段
    由直线上的正常路拱断面过渡到圆曲线上的超高断面时,必须在其间设置超高缓和段。超高缓和段长度按下式计算:
    式中:
    L e一一超高缓和段长度(m);
    b——超高旋转轴至路面边缘的宽度(m);
    △i——超高横坡度与路拱坡度的代数差(%);
    ε——超高渐变率,超高旋转轴与路面边缘之间相对升降的比率,见表13。
表13 超高渐变率
    超高缓和段应在回旋线全长范围内进行。当回旋线较长时,超高缓和段可设在回旋线的某一区段范围内,其超高过渡段的纵向渐变率不得小于1/330,全超高断面宜设在缓圆点或圆缓点处。超高缓和段起、终点处路面边缘出现的竖向转折,应予以圆顺。
    对设超高的城市道路,一般双向四车道沿中线轴旋转的超高缓和段长度基本能包含适用的一般情况。但是,对以车行道边缘线为旋转轴的或车道数较多或较宽的道路,则可能超高所需的缓和段长度大于曲率变化的缓和段长度,因此在超高缓和段长度与缓和曲线长度两者中取大值作为缓和曲线的计算长度。
    对线形要求高的高等级道路,如城市快速路、高架路,回旋线长度应根据线形设计以及对安全、视距、景观等的要求,选用较大的数值。
    超高的过渡方式应根据地形状况、车道数、超高横坡度值、横断面形式、便于排水、路容美观等因素决定。单幅路路面宽度及三幅路机动车道路面宜绕中线旋转;双幅路路面及四幅路机动车道路面宜绕中间分隔带边缘旋转,使两侧车行道各自成为独立的超高横断面。
6.2.6 加宽和加宽缓和段
    1 加宽值
    汽车在曲线上行驶时,各车轮行驶的轨迹不相同。靠曲线内侧后轮的行驶半径最小,靠曲线外侧前轮的行驶曲线半径则最大。所以,汽车在曲线上行驶时所占的车道宽度,比直线段的大。为适应汽车在平曲线上行驶时后轮轨迹偏向曲线内侧的需要,通常小于250m半径的曲线加宽均设在弯道内侧。城市道路弯道上,常因为节省用地或拆迁房屋困难而设置小半径弯道,考虑到对称于设计中心线设置加宽较为有利,而采用弯道内外两侧同时加宽,其每侧的加宽值为全加宽值的1/2.采用外侧加宽势必造成线形不顺,因此宜将外缘半径与渐变段边缘线相切,有利于行车。若弯道加宽值较大,应通过计算确定加宽方式和加宽值。
    在规范条文中,未规定具体的加宽值。为便于设计人员使用,在该处给出加宽值的计算方法,供设计人员根据具体情况选用。
    根据汽车在圆曲线上的相对位置关系所需的加宽值b w1和不同车速汽车摆动偏移所需的加宽值b w2,城市道路每车道加宽值计算公式如下:
    小型及大型车的加宽值bw为:
    铰接车的加宽值b′w为:
    式中:
    a gc——小型及大型车轴距加前悬的距离,或铰接车前轴距加前悬的距离(m);
    a cr——铰接车后轴距的距离(m);
    V-——设计速度(km/h);
    R——设超高最小半径(m)。
图1 圆曲线上路面加宽示意图
    2 加宽缓和段
    在圆曲线范围内加宽,为不变的全加宽值,两端设置加宽缓和段,其加宽值由直线段加宽为零逐渐按比例增加到圆曲线起点处的全加宽值。
    加宽缓和段的长度可按下列两种情况确定:
    1) 设置缓和曲线或超高缓和段时,加宽缓和段长度应采用与回旋线或超高缓和段长度相同的数值。
    2) 不设回旋线或超高缓和段时,加宽缓和段长度应按加宽侧路面边缘宽度渐变率为1:15~1:30,且长度不得小于10m的要求设置。
6.2.7 视距
    为了保证行车安全,应使驾驶员能看到前方一定距离的道路路面,以便及时发现路面上有障碍物或对向来车,使汽车在一定的车速下能及时制动或避让,从而避免事故。驾驶人从发现障碍物开始到决定采取某种措施的这段时间段内汽车沿路面所行驶的最短行车距离,称为视距。
    视距是道路设计的主要技术指标之一,在道路的平面上和纵断面上都应保证必要的视距。如平面上挖方路段的弯道和内侧有障碍物的弯道,以及在纵断面上的凸形竖曲线顶部、立交桥下凹形竖曲线底部处,均存在视距不足的问题,设计时应加以验算。验算时物高规定为0.1m,眼高对凸形竖曲线规定为1.2m,对凹形竖曲线规定为1.9m。货车存在空载时制动性能差、轴间荷载难以保证均匀分布、-一条轴侧滑会引起汽车车轴失稳、半挂车铰接刹车不灵等现象,尤其是下坡路段。货车停车视距的眼高规定为2.0m,物高规定为0.1m。
    视距有停车视距、会车视距、错车视距和超车视距等。在城市道路设计中,主要考虑停车视距。若车行道上对向行驶的车辆有会车可能时,应采用会车视距,会车视距为停车视距的2倍。
    停车视距由反应距离、制动距离及安全距离组成,按式(13)、式(14)计算:
    式中:
    S r——反应距离(m);
    S b——制动距离(m);
    S a——安全距离,取5m。

    式中:
    V——设计速度(km/h);
    t—反应时间,取1.2s;
    β s——安全系数,取1.2;
    μ s——路面摩擦系数,取0.4。
    停车视距的计算值及采用值见表14。
表14 停车视距
    在平曲线范围内为使停车视距规定值得到保证,应将平曲线内侧横净距范围内的障碍物予以清除,根据视距线绘出包络线图进行检验。
6.2.8 中央分隔带开口是为了使车辆在必要时可通过开口到反方向车道行驶,以供维修、养护、应急抢险时使用。中央分隔带开口间距应视需要而定,本规范只规定了最小间距。开口处应设置活动护栏,避免车辆调头。
    两侧分隔带开口是为了使车辆进出道路使用,开口间距应视需要而定,但应保证不影响正常交通的行驶,本规范只规定了最小间距及距离路口的距离。

查找 上节 下节 收藏 笔记 条文
说明
返回
顶部

目录导航